Unit V Ecology © 2001 Brooks/Cole - Thomson Learning

Fig. 43.2, p. 738

I. Ecology

- 1. Defined: The Interrelationships between organisms and their environment.
- 2. Ecosystem Structure- Trophic Levels
 - A. Autotrophic Producers
 - B. Heterotrophic -
 - Consumers
 - Primary
 - Secondary
 - Tertiary
 - Decomposers
 - C. Abiotic
- 3. Energy Relationships A. Food Chains Predator
 - Parasitic
 - Saprophytic
 - B. Food Webs

4. Concept of Habitat vs Niche

5. Biogeochemical Cycles Ex. Nitrogen Cycle

Fig. 43.23, p. 752

6. Productivity

 $\begin{array}{c} \text{Measurements} \\ \text{Standing Crop} \\ \text{O}_2 \text{ Method} \\ \text{C}^{14} \text{ Method} \end{array}$

II Limiting Factors

1. Liebig's Law of the Minimum

2. Shelford's Law of Tolerance

Eury vs Steno

Thermal	Hydric
Haline	Phagic

3. Factors

A. Temperature

1) Low Temperature effects

2) High Temperature effects

3) Animals

a. Poikilotherms
most aquatic animals
some terrestrial animals
b. Homotherms
keeping warm
keeping cool

4) Plants -transpiration

B. Light

1) **Wavelength** or color ex:Seaweeds, seed germination.

2) **Intensity** or brightness photosynthesis loss due to heat and radiation. Animals can be damaged by irradiation.

3) **Duration**- Photoperiod

a) Day length in plants- Long day, short day, day neutral

b) Day length in animals- Bird reproduction, Jet lag.

C. Water

1)Rainfall -Hydrological Cycle.

Rainfall Classification 0"-10" Desert 10"-30" Grassland,Dry Forest, Open woodland 30"-50" Dry Forest over 50" Wet Forest

2) Humidity Absolute Relative 3) Available Surface Water Supply Level of Water Table Type of Soil Sandy soils Clay soils Aggregated soils

D. Gases- Oxygen and Carbon Dioxide

1) On terrestrial environment

2) In Aquatic environment

Solubility of the gas with changes in temperature and salinity.

3)How gases get into water Atmosphere Plants Animals Decomposers Rocks

E. Currents and Pressures

1) Currents

atmospheric- winds water currents

2) Pressures

Barometric Hydrostatic

F. Soils- Stratification

1) Soil profile

- "O" horizon organic "A" horizon "humification" "B" horizon "mineralization" "C" horizon "transported materials" "R" horizon "bedrock"
- 2) Soil Comparisons Coniferous Forest Deciduous Forest Grassland
- 3) Edaphic vs Climatic Soils

G. Fire

- 1) Types Surface Crown Fire Storms
- 2) Fire Communities fire dependent fire independent

H. Ecological Indicators Eury vs Steno indicators III Organization of the Community

- 1. Major vs Minor Communities
- 2. Naming of communities physical habitat structural features
- 3. Ecological Succession

A. Defined: The process of orderly community change

B. **Primary Succession**: begins in an area where no biological community existed before.

C. **Secondary Succession**: community development from where a previous community had been removed.

D. Serial Stage

E. Climax Stage Climatic Edaphic Disclimax

F. Sere- successional story

4. Community **Stratification** : formation of layers within the community.

5. Community **Periodicity**

- A. Daily Rhythms
 - 1) Diurnal -Ex: photosynthesis
 - 2) Nocturnal
 - 3) Crepuscular
- B. Seasonal Rhythms
 - 1) Hibernal
 - 2) Prevernal
 - 3) Vernal
 - 4) Aestival
 - 5) Serotinal
 - 6) Autumnal

C. Lunar Rhythms-tides

D. Inherent Rhythms - Biological Clocks Ex: Mice

6. Ecotone and Edge Effect

- 7. Species-numbers Relationships
- 8. Paleoecology community structure of the past

IV. Organization at the Population Level

1. Population Density

A. Defined-

B. Crude Density

C. Ecological Density

D. Methods for estimating numbers

1) Direct Counts

- 2) Subsample counts transect quadrants
- 3) Mark Recapture Methods

\mathbf{P}_{2}	P_2	$P_2 = Unknown$ Population size
		M_1 = Animals captured and Marked
M_1	M_2	P_2 = Caught Population Number
		$M_2 =$ Number caught that are

marked

2. Natality Rates

A. Absolute Natality B. Ecological Natality

- 3. Mortality Rates
 - A. Minimum Mortality
 - B. Ecological Mortality
 - C. Survivorship Curves
 - Convex Curve
 - Concave Curve Straight Line

A. Convex, B. Straight Line, C. Concave

4. Population Age Distribution

5. Biotic Potential and Environment Resistance

 $\begin{array}{ll} r=PZ^n \left(R^{n\text{-}1} \right) & r=\text{biotic potential} \\ P= \# \mbox{ of females in population} \\ Z= \# \mbox{ of young each female produces} \\ n= \# \mbox{ of generations per year} \\ R= \% \mbox{ of young which are female} \end{array}$

Environmental Resistance is the sum total of the environmental limiting factors.

6. Population Growth Form and Carrying Capacity

